
Estimating Path Execution Frequency StaticallyRay Buse

Wes Weimer

THE ROAD NOT TAKENICSE 2009

Vancouver, BC

2

The Big Idea

 Developers often have a expectations about
common and uncommon cases in programs

 The structure of code they write can sometimes
reveal these expectations

3

Example

public V function(K k , V v)

{

if (v == null)

throw new Exception();

if (c == x)

r();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

4

Example

public V function(K k , V v)

{

if (v == null)

throw new Exception();

if (c == x)

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

Exception

Invocation that changes

a lot of the object state

Some

computation

5

Path 1

public V function(K k , V v)

{

if (v == null)

throw new Exception();

if (c == x)

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

6

public V function(K k , V v)

{

if (v == null)

throw new Exception();

if (c == x)

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

Path 2

7

Path 3

public V function(K k , V v)

{

if (v == null)

throw new Exception();

if (c == x)

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

8

HashTable: put

public V put(K key , V value)

{

if (value == null)

throw new Exception();

if (count >= threshold)

rehash();

index = key.hashCode() % length;

table[index] = new Entry(key, value);

count++;

return value;

}

*simplified from java.util.HashTable jdk6.0

9

Intuition

How a path modifies program state may correlate
with it’s runtime execution frequency

 Paths that change a lot of state are rare

 Exceptions, initialization code, recovery code etc

 Common paths tend to change a small amount
of state

Stack State +

Heap State

10

More Intuition

 Number of branches

 Number of method invocations

 Length

 Percentage of statements in a method executed

 …

11

Hypothesis

We can accurately predict the runtime frequency of
program paths by analyzing their static surface
features

Goals:

 Know what programs are likely to do without
having to run them (Produce a static profile)

 Understand the factors that are predictive of
execution frequency

12

Our Path

 Intuition

 Candidates for static profiles

 Our approach

 a descriptive model of path
frequency

 Some Experimental Results

13

Applications for Static Profiles

 Indicative (dynamic) profiles are often hard to get

Profile information can improve many analyses

 Profile guided optimization

 Complexity/Runtime estimation

 Anomaly detection

 Significance of difference between program
versions

 Prioritizing output from other static analyses

14

Approach

 Model path with a set of features that
may correlate with runtime path
frequency

 Learn from programs for which we have
indicative workloads

 Predict which paths are most or

least likely in other programs

15

Experimental Components

 Path Frequency Counter

 Input: Program, Input

 Output: List of paths + frequency count for each

 Descriptive Path Model

 Classifier

16

Our Definition of Path

 Statically enumerating full program paths doesn't
scale

 Choosing only intra-method paths doesn't give us
enough information

 Compromise: Acyclic Intra-Class Paths

 Follow execution from public method entry point until
return from class

 Don’t follow back edges

17

Experimental Components

 Path Frequency Counter

 Input: Program, Input

 Output: List of paths + frequency count for each

 Descriptive Path Model

 Input: Path

 Output: Feature Vector describing the path

 Classifier

18

Count Coverage Feature

• pointer comparisons

• new

• this

• all variables

• assignments

• dereferences

• • fields

• • fields written

• • statements in invoked method

• goto stmts

• if stmts

• local invocations

• • local variables

• non-local invocations

• • parameters

• return stmts

• statements

• throw stmts

19

Experimental Components

 Path Frequency Counter

 Input: Program, Input

 Output: List of paths + frequency count for each

 Descriptive Path Model

 Input: Path

 Output: Feature Vector describing the path

 Classifier

 Input: Feature Vector

 Output: Frequency Estimate

20

Classifier: Logistic Regression

 Learn a logistic function to estimate the
runtime frequency of a path

Likely to

be taken

Not likely to

be taken

Input path {x1, x2 … xn}

21

Model Evaluation

 Use the model to rank all static paths in the
program

 Measure how much of total program runtime is
spent:

 On the top X paths for each method

 On the top X% of all paths

 Also, compare to static branch predictors

 Cross validation on Spec JVM98 Benchmarks

When evaluating on one, train on the others

22

Evaluation: Top Paths

Choose 5% of all

paths and get 50% of

runtime behavior

Choose 1 path per

method and get 94%

of runtime behavior

23

Evaluation: Static Branch Predictor

We are even a

reasonable choice for

static branch prediction

Branch Taken;

Forward Not Taken

A set of

heuristics

Always choose the

higher frequency path

24

Model Analysis: Feature Power

Exceptions are

predictive but rare

Many

features “tie”

Path length matters

most

More assignment
statements → lower

frequency

25

Conclusion

A formal model that statically predicts relative
dynamic path execution frequencies

A generic tool (built using that model) that takes only
the program source code (or bytecode) as input
and produces

 for each method, an ordered list of paths through that
method

The promise of helping other program analyses and
transformations

26

Questions? Comments?

27

Evaluation by Benchmark

1.0 = perfect

0.67 = return all or
return nothing

