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The Big Idea

 Developers often have a expectations about 
common and uncommon cases in programs

 The structure of code they write can sometimes 
reveal these expectations
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Example

public V function(K k , V v) 

{

if ( v == null )

throw new Exception();

if ( c == x )

r();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}
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Example

public V function(K k , V v) 

{

if ( v == null )

throw new Exception();

if ( c == x )

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

Exception

Invocation that changes

a lot of the object state

Some 

computation
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Path 1

public V function(K k , V v) 

{

if ( v == null )

throw new Exception();

if ( c == x )

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}
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public V function(K k , V v) 

{

if ( v == null )

throw new Exception();

if ( c == x )

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}

Path 2
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Path 3

public V function(K k , V v) 

{

if ( v == null )

throw new Exception();

if ( c == x )

restructure();

i = k.h();

t[i] = new E(k, v);

c++;

return v;

}
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HashTable: put

public V put(K key , V value) 

{

if ( value == null )

throw new Exception();

if ( count >= threshold )

rehash();

index = key.hashCode() % length;

table[index] = new Entry(key, value);

count++;

return value;

}

*simplified from java.util.HashTable jdk6.0 
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Intuition

How a path modifies program state may correlate 
with it’s runtime execution frequency

 Paths that change a lot of state are rare

 Exceptions, initialization code, recovery code etc

 Common paths tend to change a small amount 
of state

Stack State + 

Heap State
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More Intuition

 Number of branches

 Number of method invocations

 Length

 Percentage of statements in a method executed

 …
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Hypothesis

We can accurately predict the runtime frequency of 
program paths by analyzing their static surface 
features

Goals:

 Know what programs are likely to do without 
having to run them (Produce a static profile)

 Understand the factors that are predictive of 
execution frequency
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Our Path

 Intuition

 Candidates for static profiles

 Our approach 

 a descriptive model of path 
frequency

 Some Experimental Results
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Applications for Static Profiles

 Indicative (dynamic) profiles are often hard to get

Profile information can improve many analyses

 Profile guided optimization

 Complexity/Runtime estimation

 Anomaly detection

 Significance of difference between program 
versions

 Prioritizing output from other static analyses



14

Approach

 Model path with a set of features that 
may correlate with runtime path
frequency

 Learn from programs for which we have 
indicative workloads

 Predict which paths are most or 

least likely in other programs



15

Experimental Components

 Path Frequency Counter

 Input: Program, Input   

 Output: List of paths + frequency count for each

 Descriptive Path Model

 Classifier
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Our Definition of Path

 Statically enumerating full program paths doesn't 
scale

 Choosing only intra-method paths doesn't give us 
enough information

 Compromise: Acyclic Intra-Class Paths

 Follow execution from public method entry point until 
return from class

 Don’t follow back edges
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Experimental Components

 Path Frequency Counter

 Input: Program, Input   

 Output: List of paths + frequency count for each

 Descriptive Path Model

 Input: Path

 Output: Feature Vector describing the path

 Classifier
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Count Coverage Feature

• pointer comparisons

• new

• this

• all variables

• assignments

• dereferences

• • fields

• • fields written

• • statements in invoked method

• goto stmts

• if stmts

• local invocations

• • local variables

• non-local invocations

• • parameters

• return stmts

• statements

• throw stmts
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Experimental Components

 Path Frequency Counter

 Input: Program, Input   

 Output: List of paths + frequency count for each

 Descriptive Path Model

 Input: Path

 Output: Feature Vector describing the path

 Classifier

 Input: Feature Vector

 Output: Frequency Estimate
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Classifier: Logistic Regression

 Learn a logistic function to estimate the 
runtime frequency of a path

Likely to 

be taken

Not likely to 

be taken

Input path {x1, x2 … xn}
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Model Evaluation

 Use the model to rank all static paths in the 
program

 Measure how much of total program runtime is 
spent:

 On the top X paths for each method

 On the top X% of all paths

 Also, compare to static branch predictors

 Cross validation on Spec JVM98 Benchmarks

When evaluating on one, train on the others
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Evaluation: Top Paths

Choose 5% of all 

paths and get 50% of 

runtime behavior

Choose 1 path per 

method and get 94%

of runtime behavior



23

Evaluation: Static Branch Predictor

We are even a 

reasonable choice for 

static branch prediction

Branch Taken;

Forward Not Taken

A set of 

heuristics

Always choose the 

higher frequency path
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Model Analysis: Feature Power

Exceptions are 

predictive but rare

Many 

features “tie”

Path length matters 

most

More assignment 
statements → lower 

frequency
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Conclusion

A formal model that statically predicts relative 
dynamic path execution frequencies 

A generic tool (built using that model) that takes only 
the program source code (or bytecode) as input 
and produces 

 for each method, an ordered list of paths through that 
method 

The promise of helping other program analyses and 
transformations
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Questions?               Comments?
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Evaluation by Benchmark

1.0 = perfect

0.67 = return all or 
return nothing


