S
] \B
R
=
(5
>
>
@)
O
m
>

5

%
, ,J.
fe))
o
O
‘N
L
7))
O
»

The Big Idea

Developers often have a about
common and uncommon cases in programs

The of code they write can sometimes
reveal these expectations

Example

if (v == null)
throw new Exception();

if (¢ ==)
r();
1 = k.h()l
t[i] = new E (k, Vv);
cCt+;

return v;

Example

ublic V function(K k , V v)

Excepti
if (v == null) / reepen

throw new Exception();

~ 'O

Invocation that changes

if (¢ ==) a lot of the object state

restructure() ;

1= k.h();

Some
t[1] = new E(k, v); computation
cCt+;

return v;

~ g
o
(o)
=
l.l-
(@]
<
Hh
=
.
Q
o
|_|.
O
.
PN
o~
<
S

if (v == null)
throw new Exception();

if (c ==)
restructure () ;

i = k.h();

t[i] = new E(k, Vv);
c++;

return v;

~ 'O
o
o)
=
-
Q
<
Hh
C
=
@
ot
|_|.
O
=
~
~
<
.

if (v == null)
throw new Exception();

if (¢ ==)
restructure();4?___'

1 = k.h()l
t[i] = new E (k, v);
Ct++;

return v;

~ 'O
o
o)
=
-
Q
<
Hh
C
=
@
ot
|_|.
O
=
~
~
<
.

if (v == null)
throw new Exception();

if (¢ ==)
restructure () ;

t[i] = new E (k, v);
Ct++;

return v;

HashTable: put

:public V put (K key , V value)

| {

' if (value == null)

: throw new Exception();

: if (count >= threshold)

: rehash () ;

I

: index = key.hashCode() % length;

I

| table[index] = new Entry(key, value);
: count++;

I

: return value;

| }

L o J

*simplified from java.util.HashTable jdk6.0

IntU|t|0n Stack State +

Heap State

How a path modifies may correlate
with it’s runtime execution frequency

Paths that change a lot of are rare

Exceptions, initialization code, recovery code etc

Common paths tend to change a small amount
of

More Intuition

Number of branches

Number of method invocations

Length

Percentage of statements in a method executed

Hypothesis

We can accurately predict the runtime frequency of
program paths by analyzing their static surface
features

Goals:

Know what programs are likely to do without
having to run them (Produce a static profile)

Understand the factors that are predictive of
execution frequency

Our Path

0 Intuition
-1 Candidates for static profiles
-1 Our approach

1 a descriptive model of path
frequency

- Some Experimental Results

Applications for Static Profiles

Indicative (dynamic) profiles are often hard to get

Profile information can improve many analyses
Profile guided optimization
Complexity/Runtime estimation
Anomaly detection

Significance of difference between program
versions

Prioritizing output from other static analyses

Approach

Model path with a set of features that
may correlate with runtime
frequency

Learn from programs for which we have
indicative workloads

Predict which are most or
least likely in other programs

Experimental Components

BT
o Path Frequency Counter
o Input: Program, Input
o1 Output: List of paths + frequency count for each

0 Descriptive Path Model
0 Classifier

Our Definition of Path

Statically enumerating full program paths doesn't
scale

Choosing only intra-method paths doesn't give us
enough information
Compromise: Acyclic Intra-Class Paths

Follow execution from public method entry point until
return from class

Don’t follow back edges

Experimental Components

22
0 Path Frequency Counter
O Input: Program, Input
O Output: List of paths + frequency count for each
-1 Descriptive Path Model
o Input: Path
o1 Output: Feature Vector describing the path

0 Classifier

pointer comparisons
new

this

all variables
assignments
dereferences

fields

fields written
statements in invoked method
goto stmts

if stmts

local invocations
local variables
non-local invocations
parameters

return stmts
statements

throw stmts

Experimental Components

I
0 Path Frequency Counter
O Input: Program, Input
O Output: List of paths + frequency count for each
0 Descriptive Path Model
O Input: Path
O Output: Feature Vector describing the path
o Classifier

o Input: Feature Vector
o1 Output: Frequency Estimate

Classifier: Logistic Regression

- Learn a logistic function to estimate the
runtime frequency of a path

1— —

Likely to _—7

be taken

Not likely to

be taken N

| n |

Input path {X;, X, ... X..}

z =_ﬁu | _51331 | _ﬁziﬁz | _ﬁ:a.i??:-} o _ﬁh:i??k::

Model Evaluation

Use the model to rank all static paths in the
program
Measure how much of total program runtime is
spent:
On the top X paths
On the top X% of
Also, compare to
Cross validation on Spec JVM98 Benchmarks
When evaluating on one, train on the others

Evaluation: Top Paths
221

Choose 5% of all
paths and get 50% of

100% —— 100%

runtime behavior
2 90% Ir_/ 90% //
-E 80% \\ 80% /
Q. 70% I — 70% -
S | Choose 1 path per | . y
(@) 60% 60%
2 oo I method and get 94% | .)
TR I of runtime behavior | /
Q. o I 40% /
3 30% I 30%
& 20% I 20% /
i: 10% I 10% /
0% : . 0% / | | | | |
0 1 2 3 4 5 6 7 8 9 10 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Number of paths selected per Percent of all paths selected

method

Evaluation: Static Branch Predictor

I I I ——

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Branch Hit Rate

We are even a

reasonable choice for
static branch prediction |

DN

N

Benchmark Name

Branch Taken;
Forward Not Taken

/

A set of
“BTENT heuristics
w Ball/Larus
= Hottest Path
Always choose the
higher frequency path

Model Analysis: Feature Power

I I ——

Many
features “tie”

parameter coverage
field count

fields written coverage
goto count

"throw" stmt count
fields written count
field coverage
parameter count

local var coverage
local invocation count
“return” stmt count
invoked method stmt count
"if* stmt count

local var count

"this” count

invoked method stmt coverage
"new” count

var count

non-local invocation count
derefrence count
assignment count

"==" count

statements count

< Exceptions are
predictive but rare

More assignment
statements - lower
frequency

Path length matters
most

0 0.2 0.4 0.6 0.8 1

Normalized Singleton Predictive Power

Conclusion

A formal model that statically predicts relative
dynamic path execution frequencies

A generic tool (built using that model) that takes only
the program source code (or bytecode) as input
and produces

for each method, an ordered list of paths through that
method

The promise of helping other program analyses and
transformations

Questions? Comments?

Evaluation by Benchmark
A

1.0 = perfect

l 0.67 = return all or
1 return nothing

check compress jess javac jack raytrace average

1

0.95

0.9

0.85

0.8

0.75

F-measure

0.7

0.65

0.6

0.55

0.5

Spec JVM Benchmark ® intra-method © inter-method

